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Inequalities

Algebraic solutions

Remember that if you multiply both sides of an inequality by a negative number, you must turn

the inequality sign round: 2x = 3 = —2x < -3.

A difficulty occurs when multiplying both sides by, for example, (x — 2); this expression is
sometimes positive (x > 2), sometimes negative (x < 2) and sometimes zero (x = 2). In this case
we multiply both sides by (x — 2)?, which is always positive (provided that x # 2).

Example 1:  Solve the inequality 2x + 3 < %, X+ 2

Solution: Multiply both sides by (x — 2)° we can do this since (x — 2) # 0
= QRx+3)(x—2)2 <x*(x—2) DO NOT MULTIPLY OUT
= Q2x+3)(x—2)2—x*(x—2)<0
= (x—2)2x2—x—-6—-x%)< 0 I
= x—2)x—-3)(x+2)< 0

5 i3 4 ¢

= x< -2, 0or2<x<3 / ‘

Note — care is needed when the inequality is < or >,

Example 2:  Solve the inequality ﬁ = xz? , x#-1, x#£-3

Solution: Multiply both sides by (x + 1)*(x + 3)* which cannot be zero
=  x(x+D(x+3)? =2(x+3)(x+1)? DO NOT MULTIPLY OUT

= x(x+Dx+3)2-2(x+3)(x+1)2 =0

= (x+DE+3)x2+3x—2x—-2)=>0

= x+DxE+3)x+2)(x—1)=0

from sketch it looks as though the solution is \ /

i ) 55— -
x':§)—3 or —2< x'fg,‘—l or x=>1

BUT since x # -1, x #-3,

the solution is x<—-3 or —2<x<-1or x=21
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Graphical solutions

Example 1:  On the same diagram sketch the graphs of y = % and y = x — 2.

Use your sketch to solve the inequality % >x-2
Solution: First find the points of intersection of the two graphs
= 2 2 !
x+3 :
/ I4
= 2x = x*+x—6 !
________ L R A
|
=  0=(x-3)(x+2) i ‘
-4 4
= x=-2or3 i
P
From the sketch we see that :

x< -3 or —2<x<3. Note that x =3

For inequalities involving |2x — 5| etc., it is often essential to sketch the graphs first.

Example 2:  Solve the inequality [x*— 19| < 5(x — 1).

Solution: It is essential to sketch the curves first in order to see which solutions are needed.

To find the point 4, we need to solve
—(x?2-19)=5x-5 = x> +5x—24=0
= (x+8)x-3)=0 = x=—-8or 3

From the sketch x # -8 = x=3
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To find the point B, we need to solve
+(x?—-19)=5x -5 = x> —5x—14=0
= (x—-7)(x+2)=0 = x=—-2or7
From the sketch x # -2 = x=7

and the solution of x> — 19| < 5(x—1) is 3<x<7

Series — Method of Differences

The trick here is to write each line out in full and see what cancels when you add.

Do not be tempted to work each term out — you will lose the pattern which lets you cancel when
adding.

Example 1:  Write in partial fractions, and then use the method of differences to find

r(r+1)
n 1 1 1 1 1
the sum Z = — -+ )
r=1 r(r+1) 1x2 2X3 3x4 n(n+1)
. 1 1 1
Solution: - - - -
r(r+1) r r+1
tr=1=o> — = 1 _ 1
put 7 1x2 1 72
_ 1 _ 1 L_ 1
put r=2 = o = 3 23
put 7 3x4 -3 4
etc. L 4
ut r=n — ! = l I;,_ L
putr= n(n+1) n n+1
1 1 n
. n _ 1 _ n
adding = 21 e 1 — —
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Example 2:  Write

r(r+1)(r+2)

in partial fractions, and then use the method of differences to

n
1 1 1 1 1
find the sum = + e —
re=1 r(r+1)(r+2) 1x2x%3 2X3X4 3X4X5 nn+1)(n+2)
. 2 1 2
Solutlon: —_— . = - - — 4+ —
r(r+1)(r+2) r r+1 r+2
2 1 2 1
put r=1 = 1x2x3 1 2 -I,_/ﬂg
(o2 o A
put-r 2x3 %4 2 73 Ty
2 1 o
put r=3 = 3X4X5 3 /7/Z -t’ﬂ 5
2 17 1
put r=4 = 5 : a5 t7%
e F
etc.
I’ﬂ 1’7
2
2 2 1
put r=n-1 = m —) /7/— + 1
G oz o1l 21
put r=n n(n+1)(n+2) n 1 2
- n__ 2 r_z 1, r_ 2 1
addlng = 21 r(r+1)(r+2) 1 2 + 2 n+l n+1  n+2
1 1 1
—_— _+_
2 n+1  n+2
n2+3n+2-2n—4+2n+2
2(n+1)(n+2)
N Zn 2 n%+43n
1 r(r+1)(r+2) 2(n+1)(n+2)
N yn 1 n%+3n
1 r(r+1)(r+2) 4(n+1)(n+2)
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Complex Numbers

Modulus and Argument

y
y
The modulus of z=x+1iy is the length of z r

= r=|z| =x?+y? z

and the argument of z is the angle made by z g
with the positive x-axis, between -z and 7.

. -1 y X
N.B. argz is not always equal to tan (;)

Properties
z=rcos@ + irsiné

Z

w

_ 2

|zw| = |z[|w], and

[w|

arg (zw) = argz + argw, and arg (%) = argz — argw

Euler’s Relation e
z=¢e¢% = cos@ + isin
1 -if L.
- e = cos @ — isin @
()
Example: Express 5e\'«+/ in the form x + iy.
i3mw
Solution: Se(T) =5 (COS (‘%ﬂ) + isin (‘%ﬂ))
= __5\/5 + ﬂ
2 2

Multiplying and dividing in mod-arg form
re® x sel® = rsel®+®)
= (rcosf@+irsinf) x(scosp+issing) = rscos(6 +¢) + irssin(@ + ¢)
and

re « sel® = E el(0-9

(rcos@ +irsinf) ~ (scos¢p +issing) = Ecos(9—¢)+ igsin(e—(;b)

FP2 10/01/12 SDB
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De Moivre’s Theorem

(reie)n = r"e™ = (rcos@+irsinf)® = (r"cosnb + i r"sinnh)

Applications of De Moivre’s Theorem

Example: Express sin 56 in terms of sin & only.
Solution: From De Moivre’s Theorem we know that

cos 50 + isin50 = (cos O+ isin O)°

= c0s 0 + 5i cos*@ sin@ + 104 cos’ O sin’0 + 10i° cos> O sin>O + 5i* cosO sin*@ + i sin’

Equating complex parts

= sin 56 = 5¢co0s*0 sin@ — 10 cos’@ sin’@ + sin’@

= 5(1 —sin’8)* sind — 10(1 —sin*6) sin’ @ + sin’@

= 16sin°@ — 20sin’°@ + 5 sind
z"+zin = 2cosn@ and z"—zln=2isinn0

z = cosf +isinf

= z" = (cosB +isinB)" = (cosnb +i sinnh)
and zin = (cos@ —isinf)™ = (cosnb — i sinnfh)

from which we can show that

(z+§) =2cosf and (z—i) = 2isinf

1 1 .
z"+— =2cosnf and z"—— = 2isinnd

Z

Example: Express sin’@ in terms of sin 56, sin 36 and sind.

Solution. Here we are dealing with siné, so we use

(2isin9)°> = (z — %)5

- a2 50 () + 100 (2) 02 () 52)- ()

ZZ
. .5 B 5 1 3 1 1
= 32isin° 68 = (z —Z—s) —5(2 —2—3)+ 10(2—;)
= 32isin®@ = 2isin50 - 5x2isin36 + 10 x2isinf

=  sin’@ = 116(sin59—5sin39+1051n9)

Z5
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n™ roots of a complex number

The technique is the same for finding #n™ roots of any complex number.

Example: Find the 4™ roots of 4 + 4i, and show the roots on an Argand Diagram.
Solution: We need to solve the equation z*=4 + 4;
1. Let z = rcos@ +irsind
= Z' = r*(cos 40 +isin 46)
2. |4+4i|=V42+42=+32 and arg(4+4i)=%
= 4+4i=\/32(cos%+isin§)
3. Then z'=4+4i
becomes r*(cos4@ +isin4d) = /32 (cos% +isin %)
= /32 (cos %n + i sin %) adding 27
= /32 (cos 1%” +isin 1%”) adding 27
= 32 (cost’T" +isin zf_’T’T) adding 27
4. = ' =432
T 9 l/m 25w
and 4(9—4, T 1 2
= r =132 = 15422
- = r m 25w
and 6= 2. 5 o0 T
5. = roots are V32 (cos% +isin1”—6) = 1.513 + 0301

V32 (cos = +isin =) ~0.301 + 1.513 i

V32 (cos - +isin==) = —1.513 —0.301i
V3Z(cos ZX +isinZX) = 0301 - 1513
21y
1
-4 -2 2 z

=1

-2

Notice that the roots are symmetrically placed around the origin, and the angle between

.2 . 2
roots is Tn = % The angle between the n™ roots will always be f .

: . 2
For sixth roots the angle between roots will be ?” = g , and so on.
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Roots of polynomial equations with real coefficients

1. Any polynomial equation with real coefficients,
Apx™ + A X"+ @y x™ 2+ Lapx?+ x4+ ag =0, ... (D
where all a; are real, has a complex solution

2. = any complex n™ degree polynomial can be factorised into # linear factors over the
complex numbers

3. If z=a+ib isarootof (I), then its conjugate, a — ib is also a root.

4. By pairing factors with conjugate pairs we can say that any polynomial with real
coefficients can be factorised into a combination of linear and quadratic factors over the
real numbers.

Example: Given that 3 —2i isarootof z° —5z2+7z+13=0
(a) Factorise over the real numbers
(b) Find all three real roots

Solution:
(a) 3-2i isaroot = 3+ 2i is also aroot
= (z— (3 -20i)(z—(3+2i) = (z—6z +13) is a factor
= 2 -57+7z+13= (F—6z +13)(z+ 1) by inspection

(b) = rootsare z = 3—-2i, 3+2i and -1

Loci on an Argand Diagram

Two basic ideas

1. |lz—wl is the distance from w to z.
2. arg(z—(1+1)) is the angle made by the line joining (1+i) to z, with the x-axis.

Example 1:

|z—2—il =3 isacircle with centre (2 + i) and radius 3

Example 2:
|z +3—il = |z—2+i]

o lz-B+dl = lz-@2-i)l

is the locus of all points which are equidistant
from the points

A(=3,1) and B(2,-1), and so is the
perpendicular bisector of 4B.
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Example 3: ary

arg (z —4) = 5?” is a half line, from (4, 0), making

5. .
an angle of ?ﬂ with the x-axis.

Example 4:
|z-3] = 2] z+2il isacircle (Apollonius’s circle).
To find its equation, put z=x + iy
= |(x—3)+iy| = 2|x+i(y+2)| square both sides
= (x- 3)2 + y2 = 4(x2 +(y+ 2)2) leading to
= 30 +6x+3)*+16y+7 =0

52

S

2v13

which is a circle with centre (-1, _?8 ), and radius - -

Example 5:

e () = 5 ’

= arg(z—2)—arg(z+5) = g P

which gives the arc of the circle as
shown.

N.B. ¥

The corresponding arc below the x-axis
would have equation ¢ P

z—2

e (55) = — ¢ %

as @ — ¢ would be negative in this picture.
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Transformations of the Complex Plane

Always start from the z-plane and transform to the w-plane,z=x+iy and w=u + iv.

Example 1:  Find the image of the circle |z —5|=3
under the transformation w = ﬁ .

Solution: First rearrange to find z

1
W= — =>z-2=

1
= z==—+2
z=2 w

SH

Second substitute in equation of circle

= |%+2—5|=3 = |1_3W

w

|=3
= |1-3w|=3w| = 3f-w|=3wl
S

which is the equation of the perpendicular bisector of the line joining 0 to %,

= the image is the line u = %
Always consider the ‘modulus technique’ (above) first;

if this does not work then use the u + iv method shown below.

Example 2:  Show that the image of the line x + 4y =4 under the transformation

1. . . .
w=-—— isa circle, and find its centre and radius.

. . 1
Solution: First rearrange to findz = z= —+ 3

The ‘modulus technique’ is not suitable here.
z=x+iy and w=u-+iv

1 1 _ 1 u—iv

= z= ;+3= u+iv T utiv u—iv+3

= x+iy = uuz::2+ 3

Equating real and imaginary parts x = ﬁ+ 3and y = uz_—:vz
= x+t4y=4 becomes ——+3 - u24:v2 =4

= W—u+ vV +4y =0
1\? 5 17
= (u—;) +w+2?r =2

which is a circle with centre G, —2) and radius g .

There are many more examples in the book, but these are the two important techniques.
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Loci and geometry

It is always important to think of diagrams.

Example: z lies on the circle |z —2i| = 1.

Find the greatest and least values of arg z.

Solution: Draw a picture!

The greatest and least values of argz
will occur at B and A.

Trigonometry tells us that

0=

ENE

and so greatest and least values of

v

2n b4
argz are — and 3

FP2 10/01/12 SDB

13



First Order Differential Equations

Separating the variables, families of curves

Example: Find the general solution of
&y __ , for x>0,
dx x(x+1)
and sketch the family of solution curves.
. dy _ y 1 _ 1 — (1_
Solution: = 7ot fy dy fx(x+1) dx fx

= Iny = Inx —In(x+1) + In4

A A (g L)
= Y x+1 - x+1 Al x+1

Thus for varying values of 4 and for x> 0, we have

47y

=3

2 =2

=1
X

2 4 6
A=—1
-2

A=-3

Exact Equations

2 odx

In an exact the L.H.S. is an exact derivative (really a preparation for Integrating Factors).

Example: Solve sin x Z—Z + ycosx =3x
Solution: Notice that the L.H.S. is an exact derivative
. dy _ a .
sinx —= + ycosx = — (ysinx)
= 2 (ysinx) = 3x°
dx

= ysinx=f3x2 de = x> +¢

x3+c
sinx

= y =

14
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Integrating Factors
% +Py =Q where P and @ are functions of x only.

In this case, multiply both sides by an Integrating Factor, R = el Pax,
The L.H.S. will now be an exact derivative, ;—x (Ry).

Proceed as in the above example.

d
Example: Solve xd—z +2y =1
Solution: First divide through by x
d 2
= d—z + ;y = ; now in the correct form
2
Integrating Factor, LF.,is R = e/Pd* = el = p2Inx — 2
2dy _ o 2
= X Tx + 2xy =X multiplying by x
d 2 . o
= a(x y) =X, check that it is an exact derivative
XZ
=  xy=[xde=7+4c¢
1 c
= y = E+x_2

Using substitutions

Example 1: Use the substitution y=vx (where v is a function of x) to solve the equation

dy _ 3yx?+y3

dx ~ x3+xy?
. dy dv
Solution: y=vx = —=v+x—
dx dx
d 3yx2+y3 dv 3(vx)x2+ (vx)3 3v+v3
- Syt L W 3 wx” _
dx x3+ xy? dx x3+ x(vx)? 1+v2

and we can now separate the variables

dv 3v+v3 3v+v3-v —v3 2v
= — = - v = =
dx 1+v2 1+v2 1+v2
1+v? dv 1
= —_— = =
2v dx x

1 1
= fz—v+gdv=f;dx

1 v?
= ~lnv + — =Inx + ¢
2 4
1 2
Butv=z, = ZlnZ+ L =lhx+ec
x 2 x 4x?
2 2 _ 2 72 . .
= 2 Iny +y " =6x"Inx + ¢’x c’is new arbitrary constant

and I would not like to find y!!!
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Example 2:

Solution:

Example 3:

=

Use the substitution y = é to solve the differential equation

dy 2
— = + ycotx.
ax Y y
1 dy -1 dz
y_z dx  z2 dx
-1 dz 1 1
— - = — t -cotx
z2 dx z2 z
dz
— 4 zcotx = —1
dx

Integrating factor is R = e/ 0t¥ d¥ = pIn(sin®) — gjp x

=

Solution:

=

But z=x+y = tan(ﬁTy)zx+c

. dz .
Sin x a +ZzZcosx = —sinx

d . .
a(zsmx) = —sinx

zsinx = cosx + ¢

cosx+c
zZ = -
sinx
__ sinx
y cosx+c

check that it is an exact derivative

but z =

Use the substitution z=x +y to solve the differential equation

v _
= cos(x +y)

dz dy
=y + = = =
z=xty = — 1 o
dz
—= 14cosz
dx
i dz= [dx
14+cosz
1 z
f—secz(—) dz = x+c
2 2

tan(g) =x+c

separating the variables

z z
1+cosz = 1+2 cos? (E)_ 1= 2cosz(5)

16
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Second Order Differential Equations

Linear with constant coefficients

daz d
ad—sz/ + bd—z + cy = f(x) where a, b and ¢ are constants.

(1) when f(x)=0

First write down the Auxiliary Equation, A.E

AE. am?+ bm+c=0
and solve to find the roots m = a or 8
(i) If ¢ and S are both real numbers, and if a # f§
then the Complimentary Function, C.F., is
y = Ae* + BeP* whered and B are arbitrary constants of integration
(i1) If « and S are both real numbers, and if o = f
then the Complimentary Function, C.F., is
y =(A+ Bx)e*, whered and B are arbitrary constants of integration
(i) If ¢ and B are both complex numbers, and if « =a +ib, f =a—ib
then the Complimentary Function, C.F.,
y = e**(Asinbx + B cos bx),
where A and B are arbitrary constants of integration
: %y v _ 5 _
Example 1:  Solve el 2 ™ 3=0
Solution: AE.is m?+2m—-3=0
= m—1)(m+3)=0
= m =1 or -3
= y = Ae* + Be™3* when f{x) = 0, the C.F. is the solution
: a’y dy _
Example 2:  Solve oz T 6 o T 9 =0
Solution: AE.is m*+ 6m+9= 0
=  (m+3)’=0
= m = -3 (and —3) repeated root
= y=(A+ Bx)e‘3x when f{x) = 0, the C.F. is the solution

FP2 10/01/12 SDB
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: Fy | 4 -
Example 3:  Solve —— + 4-—+ 13 =0

Solution: AE.is m*+ 4m+13= 0
=  (m+2*-Gi)*=0
= (m+2+3)(m+2-3))=0
= m=-2-3i or —2+3i
= y = e X (Asin3x + B cos3x) when f{(x) =0, the C.F. is the solution

18

(2)

when f (x) £ 0, Particular Integrals

First proceed as in (1) to find the Complimentary Function, then use the rules below to

find a Particular Integral, P.1.
Second the General Solution, G.S. , is found by adding the C.F. and the P.I

= GS. =CF + P.L

Note that it does not matter what P.I. you use, so you might as well find the easiest,

which is what these rules do.

1) f(x)=e*

Try y= A"
unless € appears in the C.F., in which case try y = Cxe"™
unless xe™ appears in the C.F., in which case try y = Cx’e".

(2) f(x)=sinkx or f(x)=coskx

Try y =Csinkx + Dcoskx
unless sin kx or cos kx appear in the C.F., in which case
try y =x(Csinkx + D coskx)

(3) f (x) = apolynomial of degree n.

Try f(x) = apx™ + apox™ 1+ ap_ox" 2+ .+ ax+ ag
unless a number, on its own, appears in the C.F., in which case
try f(x) = x(@px™ + ap x4 ap_x" 2+ L+ ax+ ag)

4) In general

to find a P.IL., try something like f'(x), unless this appears in the C.F. (or if there is

a problem), then try something like x f'(x).
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. a%y dy _
Example 1:  Solve prcis 6dx + 5y = 2x

Solution: AE. is m*+6m+5=0
= m+5(m+1)=0 = m=-5 or —1
= CF.is y=A4e™>* + Be™

Forthe P.I, try y=Cx +D
2

= 2=Cand Z=0
dx dx

Substituting in the differential equation gives
0+ 6C + 5(Cx+D) =2x

= 5C=2 comparing coefficients of x
2
= C=-=
5
and 6C + 5D =0 comparing constant terms
—-12
= D=——
25
. 12
= PLisy=-x——
25
— — 12
= GS.is y—Ae5x+Bex+§x—E

: a2y _ oy — 3%
Example2:  Solve TaZ 6dx +9y = e
Solution: AE.is is m*—6m+9=0
=  (m-3=0
= m =3 repeated root
= CF.is y = (Ax + B)e3*

In this case, both e3* and xe3* appear in the C.F.,

soforaPl wetry y=Cx2%e3*
= % = 2Cxe3* + 3Cx%e3*
2
and % = 2Ce3 + 6Cxe3* + 6Cxe3* + 9Cx2e3*

Substituting in the differential equation gives

2Ce3* + 12Cxe3* + 9Cx2e3* — 6(2Cxe3* + 3Cx?e3*) +9 Cx2e3*

= 2Ce3* = 3%
= c=1
2
= Plis y= %xze?’x
= GS.is y=(Ax+ B)e3* + %x2e3"
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d?x
Example 3:  Solve w2 X = 4cos 2t

giventhat x=0and x =1 when ¢#=0.
Solution: AE.is m*~1=0
= m = *l1
= CF.is x=Ae'+ Be™t

Forthe P.I.try x = Csin2t + D cos2t

2C cos2t — 2D sin 2t
—4Csin2t — 4D cos 2t

= X

and X
Substituting in the differential equation gives

(—4Csin2t — 4D cos2t) — (Csin2t + D cos2t) = 4 cos 2t

= -5C =0 comparing coefficients of sin 2¢
and 5D =4 comparing coefficients of cos 2¢
-5

= C=0 and D= "

. -5
= PLis x= - cos 2t

. _ 5
= GS.is x = Ae'+ Be™t — S cos 2t

. t _t 5 .

= x =Ae'— Be ™"+ Estt

x=0and when t=0 :>0=A+B—§
and x =1 when =0 = 1=A4-B

= A=2 and B ==
8 8

-t

. . 9 1 5
= solution is x =§et+ set - ZcosZt
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2
D.E.s of the form ax? % + bx% +cy = f(x)

Substitute x = ¢€"

dx u
= — =¢€'=x
du
d dx d d d
and —y=—>< o4 = e A s result T
du du dx du dx
dy
dz d dy/ da /d dx
But 321 = C) = ( u) X — using the chain rule
du du dx du
dy
d(x / dx) dx .
= X — using result [
dx du
d? d dx
= (xd_x}zl + d_z) X T product rule
d?y 2 d%y dy ax
= o X IxZ + XE since —— = x
d? d? d
= 222 = 22 2 using result [
dx? du? du
d? d? d d d
Thus we have x222 = 22 — 2 459 x2 =2
dx? du? du dx du

substituting these in the original equation leads to a second order D.E. with constant

coefficients.
. . . Zdzy dy 2
Example: Solve the differential equation x -z BxE + 3y = —2x°.
Solution: Using the substitution x = ¢“, and proceeding as above
2 2
xzd—i’: d—JZ}— L oand x 2 =2
dx du du dx du
@y _ ay _ gay _ e
= du? du 3du + 3y = —2e
dz_y —_ d_y — 2u
= T 4du + 3y = —2e
=  AEis m —4m+3=0
= m-3)(m-1)=0 = m=3or 1
= CF.is y = 4™ + Be"

For the P.I. try y = Ce™

= 2o 2ce? and L2 = 4ce
du du

= 4Ce?™ — 8Ce?™ + 3Ce?™ = —2e2¢

= c=2

= G.S.is y = A + Be" + 2¢™

But x=¢" = G.S.is y = Ax + Bx + 2x°

FP2 10/01/12 SDB 21



Maclaurin and Taylor Series

1)

2)

3)

4)

22

Maclaurin series

f@ = FO)+ xf'(0)+ Tf70) + T f(0) + - + ZFm(0) + -

Taylor series

fa+a)= f@+ xf' @+ Sf'@+ @+ + @)+

Taylor series — as a power seriesin (x —a)

replacing x by (x—a) in2) we get

f@ = f@+ @ —a)f' @+ S @)+ S22 @) + o+ T (a) + o

Solving differential equations using Taylor series

(2)

(b)

If we are given the value of y when x = 0, then we use the Maclaurin series with

f(O) = Yo the value of y when x=0
d

f’(O) = (_y) the value of e when x =0
dx 0 dx

etc. to give

r@=y =t x(3), + 5GE),* FEE), w63,

If we are given the value of y when x = xy, then we use the Taylor power series

with

f(a) = Yx, the value of y when x =x,
f'(a) = (Z—z) the value of % when x =x,
etc. to give

_ _ dy (x—x0)? dz_y) M(ﬂ)
y - yXO + (x xO) (dx)xo + 2! (de X + 3! dx3 Xo +

NOTE THAT 4 (a) and 4 (b) are not in the formula book, but can easily be found

using the results in 1) and 3).
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Standard series

x?  x3 x™
e* = 1+x+;+ i e s converges for all real x
i _ x3 x5 n-i xZTL—l
sinx = x 3 + 5 + (-1) Zn-1)! + converges for all real x
2 4 2n-2
cosx=1->=+< —.. 4 (_1)n_1x_ + - converges for all real x
21 4l (2n-2)!
x| x3 no1x"
In(1+x) = x——+ -+ (-1 — - converges for -1 <x <1
-1 -1)..(n-r+1
1+x)"=1+nx+ %xz + -+ WXT =+ - converges for -1 <x<1

Example 1:  Find the Maclaurin series for f(x) = tan x, up to and including the term in x°

Solution: f(x) =tanx = f'(0)=0
=  f'(x) =sec’x = f"0)=1
=  f"(x) =2sec’xtanx =  f"(0) =0
=  f"'(x) =4sec’xtan’x + 2sectx =  f¥0)=2

and  fG) = O+ xf' O+ TfO)+ TF0) 4+ L fr0) +

x? x3
= tanx = 0+ xxX1 + ;XO-I— ;XZ up to the term in x°
%3
= tanx = x + 3

Example 2:  Using the Maclaurin series for ¢' to find an expansion of e* +x2, up to and

including the term in x°.

2 3
Solution: eX*=1+x+ % + ’;_' + .

(x+xz)2 n (x+xz)3

= et = 1 4 (x +x2) +
2! 3!

up to the term in x*

x242x3 4+ x34e
+
2! 3!

= 14+x+x%+

up to the term in x°

2 3 7
= eXt¥” = 1 +X+EX2 + EXB up to the term in x°
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Example 3:  Find a Taylor series for cot (x + %), up to and including the term in x”.

Solution: f(x) = cotx and we are looking for
T\ _ b3 (T x2 (T
Fleed) =1 @)+ (D)5 ()
f(x) = cotx = f(%) =
! _ 2 (T
= f'(x) = —cosec* x = f (Z) =-2
=  f"(x) = 2cosec? x cotx = f" (%) =4
= cot (X + E) = 1—-2x+ x? X 4 up to the term in x°
4 2!

= cot (X + %) = 1 —2x+2x up to the term in x*

Example 4:  Use a Taylor series to solve the differential equation,

2 2
yd—y + (d—y) +y=0 equation [

dx? dx

up to and including the term in x°, given that y=1 and 2 — 2 when x=0.
dx

In this case we shall use

fE = fO+ xf'©@+ SO+ L0+ + Zfr(0) +

_ ay ﬁ(dz_Y) ﬁ(‘f_y)
< Y= y0+x(dx)0+ 2! \dx? 0+3! dx3)y’
We already know that yo=1 and (Z—i) =2 values when x = 0
0
2 2
= (d_y) = (_l(d_y) - 1) = -5 values when x =0
dx?/ y \dx 0
Differentiatin &y + (d—y)z +y=0
g dx? dx y
2y, dy  dy ay 4y dy
= dx3+dx dx? +2dxxdx2+dx =0
o d d?
Substituting yo =1, (—y) =2 and (—}2}) = -5 values when x =0
dx/ g dx</g

d3y _ _
- (m)0+2><( 5)+2x2%x(5)+2 = 0

asy\ _
= (&),=28
L - x2 - x3
= solution is y:l+2x+;><( 5)+EX28

= y=142x— 2x? 41243
2 3
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Series expansions of compound functions

Example: Find a polynomial expansion for
CcoS 2x . . . 3
T3z’ up to and including the term in x”.
Solution: Using the standard series
2
cos2x = 1— % + .- up to and including the term in x*
and (1-3%)"1 =1+3x+ ‘1;‘2 (=3x)2 + w(—?;x)?’
=14 3x +9x2% + 27x3 up to and including the term in x*
cos 2x 2
- =(1—@)(1+3x+9x2+27x3)
1-3x 2!
=14 3x +9x% +27x3 — 2x? — 6x3 up to and including the term in x*
cos 2x
= 13x =1+43x+7x%+21x3 up to and including the term in x*
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Polar Coordinates

The polar coordinates of P are (r, 8)
P(r, 0)

r= OP, the distance from the origin,
and @ is the angle made anti-clockwise with the
initial line. initial line

In the Edexcel syllabus r is always taken as positive

(But in most books 7 can be negative, thus (—4, g) is the same point as (4, 3?”) )

Polar and Cartesian coordinates y

From the diagram

=72 P@wy)

and tan® = Z (use sketch to find ). Y
X

x =rcos @ and y = rsin 4. x

Sketching curves

In practice, if you are asked to sketch a curve, it will probably be best to plot a few points. The
important values of @ are those for which »=0.

The sketches in these notes will show when 7 is negative by plotting a dotted line; these sections
should be ignored as far as Edexcel A-level is concerned.

Some common curves

r=a+bcosfO

Cardiod Limacon without dimple Limacon with a dimple
a=b a22b, b<a<2b
4y r=3+3cos @ 4ty 4ty
r=3+1.4cos 0 r=3+2cos6
2 2 5
1 1 1
X X X
2 4 2 4 6 2 4 6
-1 -1 »
2 -2 -2
_3 o -3
-4 -4 4
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Limacon with a loop Circle Line
a<b
r negative in the loop r negative in bottom half
41y 41y 41y
3 r=2+3cos r=3 3 8=m/6
2 2 2
1 1
~ X
-2 4 6
- -1
-
-2 e -2
-3 -3
-4 -4 -4
Line Line Circle
. 4 4
4y r=3 cosec 6 Y
31 3 3
r=4cos 6
21 2 2 .
1‘ 1 1 /\
N ) ! \_/
-21 -2 -2
-3 -3 -3
Wl r=3secH 4 4
Rose Curves
r=4cos 36 r=4cos 36
087 T 0L2rx
4ty y
r=4 cos 360 \ N\ r=4 cos 360

O

-

below x-axis, r negative
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r=3cos46

44Ly
r=3 cos 40

Thus the rose curve » = a cos@ always has n petals, when only the positive values of r are
taken.

Leminiscate of Bernoulli Spiral r=26 Spiral r=¢e?

2 r2=16c0529° 4

Circle r=10cos @

Notice that in the circle on OA4 as diameter, the P
angle P is 90° (angle in a semi-circle) and 47
trigonometry gives us that » =10 cos 4. ol L
(o) A
5 0
21
-4+
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Circle r=10sin @

A
In the same way = 10 sin € gives a circle on the y-axis. 6
P
5 r
' 0 0
-5 5
Areas using polar coordinates
Remember: area of a sector is %rZH B
0
Area of OPQ = 04 =~ 21250
2 oA P
= Area OAB~= Y, (1r289)
2 r
o0 4
as 68 —> 0
= Area OAB = f:lz %rz deo pital fine
Example: Find the area between the
curve »=1+tan 0
and the half lines 0 =0 and 6 = -
3T y=1+tanx
; _ (1.2
Solution: Area = [/73 -2 d
— 7-[/3 1 2
= J,”? $(1+tan6)* db 2t 0=m/3
— 7-[/3 1 2
= J,”? +(1+2tan6 +tan*0) do
) 1
= J,"® 3(2tan6 +sec?6) db
= 2[2In(sec §) + tan 9]71/3
2 0
/]
= In2 + ?
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Tangents parallel and perpendicular to the initial line

y=rsinf and x =rcosf

v _ vy do
dx dx/ a6
1) Tangents will be parallel to the initial line (6= 0), or horizontal, when % =0
dy _
4 T 0
2 (rsing) = 0
= 70 (rsinf) =
2) Tangents will be perpendicular to the initial line (6= 0), or vertical, when % is infinite
dx
- E =0

d
= ' (rcos8) = 0
Note that if both Z—Z =0 and Z—: = 0, then Z—z is not defined, and you should look at a sketch
to help (or use 1'Hopital's rule).
Example: Find the coordinates of the points on 7 = 1 + cos 8 where the tangents are
(a) parallel to the initial line,
(b) perpendicular to the initial line.

Solution: r =1+ cos@ is shown in the diagram.

(a) Tangents parallel to =0 (horizontal)

= Z—zzo = ;—e(rsine) =0

= %((1+c059)sin6)= 0 = %(sin6+sin9c059)= 0
= cos @ —sin? 6 + cos? 0 = 0 = 2cos?0+cosf—1=0
= (2cosf —1)(cos8+1)=0 = cost% or —1

= 9=i§ or @

(b) Tangents perpendicular to =0 (vertical)

= Z—z=0 = ;—G(rcose) =0

= ;—9((1+c059)c059)= 0 = %(c059+c0529)= 0
= —sinf —2cosfsinf =0 = sinf (1+2cosf) =0
= cosf = —% or sinf =0

= 0=i2§ or 0,7
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From the above we can see that B
(a) the tangent is parallel to 8 =0 1
o _ . m Cc
at B (9 —E),and E(H = 3),
also at 8 = m, the origin — see below 1 ~,
D
) the tangent is perpendicular to 8 =0 -1
_ _2n _-r E
at 4(0=0), C (9_?) and D (O—T)
(¢ we also have both Z—z =0 and 3—39’ = 0 when 6 = m!!!
From the graph it looks as if the tangent is parallel to & =0 at the origin, (6 = m),
and from I'Hopital's rule it can be shown that this is true.
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complex numbers, 7

applications of De Moivre’s theorem, 8
argument, 7

De Moivre’s theorem, 8

Euler’s relation, 7

loci, 10

loci and geometry, 13

modulus, 7

nth roots, 9

roots of polynomial equations, 10
transformations, 12

differential equations. see second order
differential equations, see first order
differential equations

first order differential equations, 14
exact equations, 14

families of curves, 14

integrating factors, 15

separating the variables, 14

using substitutions, 15

inequalities, 3

algebraic solutions, 3

graphical solutions, 4

32

Maclaurin and Taylor series, 22
expanding compound functions, 25
standard series, 23
worked examples, 23

method of differences, 5

polar coordinates, 26
area, 29
cardiod, 26
circle, 28
leminiscate, 28
polar and cartesian, 26
r=acosnb,27
spiral, 28
tangent, 30

second order differential equations, 17
auxiliary equation, 17
complimentary function, 17
general solution, 18
linear with constant coefficients, 17
particular integral, 18
using substitutions, 21
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